Share

Wrightstyle is a leading steel glazing company that has supplied systems for transportation projects intermationally, including the Dubai Metro. Wrightstyle’s technical director Lee Coates reports.

It’s a railway station announcement of seemingly no importance. In the UK, it asks "Inspector Sands to please report to the control room." However, more of him later.

The first railway in the Middle East was the Alexandria to Cairo line, which opened in 1856. The second, two years later, linked Izmir with Seydikoy in Turkey. Yet the Middle East and North Africa still has one of the lowest density rail networks in the world, with only 34,000 kilometres of track over a landmass of some 15 million square kilometres.

All that seems set to change. It’s been recently announced that a 2,117km GCC project will start construction by 2014 and be operational by 2017/2018, to link the GCC with Yemen via Muscat.

Elsewhere, Kuwait is building a $7 billion 171 kilometre inner city Metro, which should begin operations in 2020, and will have a first phase completion of 28 stations. The plan is also to link Kuwait internationally.

Qatar meanwhile is planning an integrated railway system, and it’s intended that the first phase will open before the FIFA World Cup in 2022. Dubai, of course, already has a working Metro on which Wrightstyle was involved.

Elsewhere, for example, the Jordanian government has advanced plans for a national railway network to link Iraq with the Red Sea and Saudi Arabia with Syria, Turkey, and Europe.

This is echoed in plans by Saudi Arabia to build a cross-country scheme from the Gulf to the Red Sea, which will include a high-speed stretch to Mecca and Medina. Altogether, the Saudis plan to spend $45 billion (£28 billion) on 7,000km of new railway.

Further away, but still relevant, China is building a network of 42 high-speed lines to open up distant provinces to the wealth of its industrial heartlands. Longer-term, China also plans to link Asia with Europe in a new Iron Silk Road. If other rail networks are completed in the Middle East, this would allow rail access from, for example, Saudi Arabia to China, Singapore or Hong Kong.

It adds up to a new golden age for railways in the Middle East, as cities grow ever larger and the problems in moving people and freight become more complex. Leaving aside regional tensions and conflict, the proposed enhancements to the Middle Eastern network could be the start of a global network – with huge ramifications for trade.

At Wrightstyle, we’ve been involved in a number of transportation projects internationally, our focus being on fire safety in railway stations, and how best to contain fire, hot gases and toxic fumes if a fire does break out.

And that’s where Inspector Sands comes in, because he doesn’t exist. In different variations, across countries around the world, it’s used when a fire alarm is activated. It’s a coded signal to give staff time to check that fire alarm and quickly determine if it represents a potential emergency.

It’s a sensible precautionary measure to avoid an immediate – and perhaps unnecessary – evacuation, alarm the general public, perhaps cause panic and, inevitably, lead to significant disruption.

Similar codes are used across the Middle East, although we won’t give away any secrets – anywhere that large numbers of people congregate – from stadia to theatres, and even to some restaurants. It alerts staff to the potential need to evacuate people, and therefore to their evacuation duties, and allows for a swift assessment of the situation.

The importance of a pre-evacuation assessment is that fire alarms often turn out to be false alarms. Modern alarm systems are sensitive and can be easily triggered, and false alarms are disruptive and costly – as well as, like the boy who cried wolf, undermining our faith in future alarms.

More than anything, it’s how false alarms diminish our faith in the alarm itself that’s so important. We hear the alarm but can’t see a fire. We don’t know how to react or if we should react. We don’t have the facts on which to base a flight strategy, so we assume it’s a false alarm, or at least sit tight until we have more information.

This golden period following an alarm is often taken up with "start up" time – people wondering what to do, or whether to do anything at all.

There are many well-documented tragic fires where a delayed flight response has led to multiple casualties. Most tragic of all was 9/11, when less than 9% of the occupants of the World Trade Center towers immediately evacuated after the alarms were sounded.

The average "start up" time before people started to move to the WTC exits was between five and eight minutes. Others didn’t start to evacuate for up to 40 minutes.

It means that we need to have fire alarms in which we have faith, and therefore assuring us that when an alarm sounds we need to take it seriously.

In high-traffic places such as railway stations, that means having intelligent detection systems designed to cope with both large open areas and the more confined spaces of, for example, offices and retail outlets.

Those systems should integrate into a station or building management system, covering everything from escalators and lifts to heating systems. The key is to have a system that can localise the fire, perhaps also using optical or thermal sensors. If it does turn out to be a fire, the emergency services need to know precisely where it is.

It’s something that we understand at Wrightstyle, a company that has invested significantly in designing and manufacturing glazing systems to mitigate against bomb and ballistic attack, as well as against fire and high wind loading.

Apart from the Dubai Metro, we’ve also recently supplied systems to transportation projects in Hong Kong and to the iconic King’s Cross station in London – among others. (For Harry Potter fans, King’s Cross station is where you catch the train to Hogwarts*).

We understand that in a fire situation people will often delay evacuating that building, particularly from buildings where there is no PA system. Studies conclusively demonstrate that when there is a leadership figure giving verbal information over a PA system flight time is greatly reduced.

It means designing in additional safety, over and above a minimum fire safety specification. With modern glazing systems certified up to 120 minutes for both insulation and integrity, that gives everyone – able-bodied or the elderly or infirm – more than enough time to move to safety.

Our systems are designed to contain fire, allowing buildings to be sub-divided into compartments so that, in an emergency, the fire, smoke and toxic gases can be trapped in one defined area – minimising risk to human life and infrastructure damage.

Significant fires in railway stations are mercifully rare – and that, more than anything, speaks volumes for how far fire safety has progressed over recent years, not only in advanced detection systems, but in building materials, fire safety regulations, and in fire and rescue response. direction.

However, fires do happen – in stations or on trains, and people do get injured. Perhaps the worst modern station fire disaster, in 2003, was at Daegu Station in South Korea in which 192 people died.

What was particularly shocking, on top of the scale of human loss, was how badly the station’s fire compartmentation systems were designed. Instead of containing the fire, but allowing people to escape, the system closed fire shutters and smoke barriers – effectively concentrating the heat into places from which people were desperately trying to escape. Nor was there a sprinkler system to reduce heat and douse the flames.

The Korean fire once again concentrated minds on the importance of effective compartmentation and on providing escape routes able to cope with large numbers of people all exiting simultaneously. In the UK it was a reminder of the King’s Cross disaster in which fire claimed the lives of 31 people in 1987.

Probably started by a discarded match or dropped cigarette on an escalator, it underlines how most major accidental fires start from something almost insignificant – a faulty light socket, or a burning cigarette casually disposed of. It also underlines how detection systems have to pick up on those insignificant events and determine how insignificant – or otherwise – they really are.

However, in the London fire, and underlining the vagaries of human nature, many passengers stepped over fire hoses to reach elevators taking them underground for their trains. That’s what they were at Kings Cross to do, and a seemingly-innocuous fire wasn’t going to stop them. In the retail sector, research suggests that people would rather first go to the check-out to purchase goods rather than immediately evacuate the building.

All Wrightstyle systems are tested as one compatible unit and, as we always emphasise to architects and designers, based on our extensive fire, ballistic and bomb testing experience, the glass and steel components should always be specified as one integrated and tested assembly. The glass is only be as good as its framing system, or vice versa, and if one fails, both fail, with potentially catastrophic consequences. We also have test certification in the USA, one of the few international suppliers to have tested our systems in Europe, the Far East and America.

All of us in the fire and building security sector now work interdependently; assessing a whole building’s ability to withstand fire and designing in safety – making sure that, if the worst happens, we have the systems and evacuation procedures in place to contain the fire and get everyone to safety.

In the new dawn of rail transport in the Middle East, that’s good to know.